Sample Paper 2014: Paper 2

QUESTION 9 (25 marks)

An equilateral triangle fits into the base of the cylinder exactly. The circle at the base of the cylinder is a circumcircle with centre O. The centre of a circumcircle O is found by intersecting the perpendicular bisectors of the sides of the triangle. Lift out the highlighted triangle to find an expression for r.

$$
\cos 30^{\circ}=\frac{a}{r}
$$

$\frac{\sqrt{3}}{2}=\frac{a}{r}$
$\therefore r=\frac{2 a}{\sqrt{3}}$

Formulae and Tables Book
Trigonometry: Right-angled triangle [page 16]

$$
\sin A=\frac{a}{c}, \cos A=\frac{b}{c}, \tan A=\frac{a}{b}
$$

$$
c^{2}=a^{2}+b^{2}
$$

Lift out the highlighted triangle to find an expression for h. It is a right-angled triangle.

$$
\begin{aligned}
& h^{2}+\left(\frac{2 a}{\sqrt{3}}\right)^{2}=(2 a)^{2} \\
& h^{2}+\frac{4 a^{2}}{3}=4 a^{2} \\
& h^{2}=4 a^{2}-\frac{4 a^{2}}{3}=\frac{8 a^{2}}{3} \\
& h=\sqrt{\frac{8 a^{2}}{3}}=\frac{2 \sqrt{2} a}{\sqrt{3}} \\
& V=\pi r^{2} h \\
& =\pi\left(\frac{2 a}{\sqrt{3}}\right)^{2}\left(\frac{2 \sqrt{2} a}{\sqrt{3}}\right)
\end{aligned}
$$

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi\left(\frac{2 a}{\sqrt{3}}\right)^{2}\left(\frac{2 \sqrt{2} a}{\sqrt{3}}\right) \\
& =\pi\left(\frac{4 a^{2}}{3}\right)\left(\frac{2 \sqrt{2} a}{\sqrt{3}}\right) \\
& =\frac{8 \pi \sqrt{2} a^{3}}{3 \sqrt{3}} \\
& =\frac{8 \pi \sqrt{2} a^{3}}{3 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& =\left(\frac{8 \sqrt{6}}{9}\right) \pi a^{3}
\end{aligned}
$$

Formulae and Tables Book

Formulae and Tables Book

Formulae and Tables Book Surface area and volume:

Cylinder [page 10]

